中国组织工程研究 ›› 2017, Vol. 21 ›› Issue (14): 2140-2146.doi: 10.3969/j.issn.2095-4344.2017.14.002

• 组织工程骨及软骨材料 tissue-engineered bone and cartilage materials • 上一篇    下一篇

三维打印制备掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架

张  旭,吴良浩,李得见,敖荣广,陈帆成,禹宝庆   

  1. 复旦大学附属浦东医院骨科,上海市  200120
  • 收稿日期:2016-12-06 出版日期:2017-05-18 发布日期:2017-06-10
  • 通讯作者: 禹宝庆,博士,主任医师,复旦大学附属浦东医院骨科,上海市 200120
  • 作者简介:张旭,男,1988年生,山东省枣庄市人,汉族,复旦大学附属浦东医院在读博士,主要从事三维打印生物可吸收支架实验研究。
  • 基金资助:

    上海市科委基础研究领域项目(13JC1407302);浦东新区卫生系统重点学科群建设资助(PWZxq2014-03);上海市卫生局重点课题(20134039)

Three-dimensional printing of Fe-containing mesoporous calcium-silicate/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds

Zhang Xu, Wu Liang-hao, Li De-jian, Ao Rong-guang, Chen Fan-cheng, Yu Bao-qing   

  1. Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai 200120, China
  • Received:2016-12-06 Online:2017-05-18 Published:2017-06-10
  • Contact: Yu Bao-qing, M.D., Chief physician, Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai 200120, China
  • About author:Zhang Xu, Studying for doctorate, Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai 200120, China
  • Supported by:

    The Shanghai Science and Technology Commission Foundation for Basic Research, No. 13JC1407302; Disciplines Group Construction Project of Pudong Health Bureau of Shanghai, No. PWZxq2014-03; Major Scientific Research Projects of Shanghai Municipal Health Bureau, No. 20134039

摘要:

文章快速阅读

 

文题释义:
三维打印技术
:通过计算机辅助设计(CAD)软件建模,再将建成的三维模型“分区”成逐层的截面,喷头在计算机的控制下,按照截面轮廓的信息,在铺好的一层粉末材料上,有选择性地喷射黏结剂,使部分粉末黏结,形成截面层。一层完成后, 工作台下降一个层厚,铺粉,喷黏结剂,再进行后一层的黏结,如此循环形成三维产品。
3-羟基丁酸-3-羟基己酸共聚酯:是近年来生物材料领域被广泛运用的一种新型材料,是聚羟基脂肪酸酯的第3代衍生产品,具有比聚-β-羟丁酸酯及聚β-羟基丁酸戊酸酯更高的抗断裂强度,还具有良好的生物相容性,所以是一种理想的生物可降解材料。


背景:由于三维打印技术便捷、快速、操控性强的突出优点及可构建复杂形状的能力,在组织工程支架制备领域表现出无可比拟的优势。
目的:利用三维打印技术制备掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架,并进行表征及细胞相容性实验。
方法:利用三维打印技术制备含铁摩尔百分比分别为0%,5%,10%,15%的掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架,分别记为0Fe-MCS/PHBHHx、5Fe-MCS/PHBHHx、10Fe-MCS/PHBHHx及15Fe-MCS/PHBHHx;扫描电镜观察支架浸泡于模拟体液前后的微观结构。将成骨细胞株MC3T3-E1分别接种于4组支架上,培养1,3,7 d,CCK-8法检测细胞增殖;培养7,14 d,检测细胞碱性磷酸酶活性。
结果与结论:①与浸泡前相比,在模拟体液中浸泡3 d后,各组支架上出现了由矿化而形成的球形颗粒;②培养第1天,4组间细胞增殖无差异;培养第3天,15Fe-MCS/PHBHHx组细胞增殖显著高于其他3组(P < 0.05);培养第7天,10Fe-MCS/PHBHHx组、15Fe-MCS/PHBHHx组细胞增殖明显高于0Fe-MCS/PHBHHx组(P < 0.05),且15Fe-MCS/PHBHHx组高于10Fe-MCS/PHBHHx组(P < 0.05);③培养第7天,4组细胞碱性磷酸酶活性无差异;培养第14天,5Fe-MCS/PHBHHx组、10Fe-MCS/PHBHHx组、15Fe-MCS/PHBHHx组细胞碱性磷酸酶活性明显高于0Fe-MCS/PHBHHx组(P < 0.05),15Fe-MCS/PHBHHx组支架显著高于其他3组(P < 0.05);④结果表明,掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架具有促进细胞增殖和成骨分化的能力。

ORCID: 0000-0001-8800-832X(禹宝庆)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 生物材料, 骨生物材料, 三维打印, 生物相容性, 硅酸钙, 3-羟基丁酸-3-羟基己酸共聚酯, MC3T3-E1细胞, 支架, CCK-8, 碱性磷酸酶

Abstract:

BACKGROUND: Three-dimensional (3D) printing technique has showed unparalleled advantages in the field of tissue engineering scaffold preparation because of its outstanding merits of convenience, efficiency, controllability and ability to construct complex shapes.
OBJECTIVE: To fabricate Fe-containing mesoporous calcium-silicate (MCS) /poly (3-hydroxybutyrate-co-3- hydroxyhexanoate) (PHBHHx) composite scaffolds using the 3D printing technique and to test the characterization and cellular biocompatibility of the composite scaffolds.
METHODS: Four groups of Fe-containing MCS/PHBHHx composite scaffolds were fabricated using 3D printing technique. The molar percentage of Fe in these four groups was 0%, 5%, 10%, 15%, respectively and they were marked as 0Fe-MCS/PHBHHx, 5Fe-MCS/PHBHHx, 10Fe-MCS/PHBHHx and 15Fe-MCS/PHBHHx. The scanning electron microscopy was used to observe the microstructure of the scaffolds after being soaked in the simulated body fluid. Osteoblast cell lines MC3T3-E1 were seeded on these four groups of scaffolds as well. Cell counting kit-8 method was adopted to test the cell proliferation at 1, 3, 7 days of culture. Intracellular alkaline phosphatase activity was tested at 7 and 14 days of culture.
RESULTS AND CONCLUSION: (1) Compared with the scaffolds with no soaking process, spherical particles were formed on the scaffolds because of mineralization after soaking 3 days in the simulated body fluid. (2) At 1 day of culture, there was no difference in cell proliferation among the four groups. At 3 days of culture, the proliferation rate of the 15Fe-MCS/PHBHHx scaffold was remarkably higher than that of the rest three groups (P < 0.05). At 7 days of culture, the proliferation rate was significantly higher in the 10Fe-MCS/PHBHH and 15Fe-MCS/PHBHHx scaffolds than the 0Fe-MCS/PHBHH scaffold (P < 0.05), as well as significantly higher in the 15Fe-MCS/PHBHHx scaffold than the 10Fe-MCS/PHBHH scaffold (P < 0.05). (3) At 7 days of culture, no difference in alkaline phosphatase activity could be found among these four groups of scaffolds; however, at 14 days, the 5Fe-MCS/PHBHHx, 10Fe-MCS/PHBHHx and 15Fe-MCS/PHBHHx scaffolds exhibited an enhanced alkaline phosphatase activity compared with the 0Fe-MCS/PHBHHx scaffold. Meanwhile, the 15Fe-MCS/PHBHHx showed the highest alkaline phosphatase activity. These findings indicate that the MCS/PHBHH scaffolds containing Fe could promote the proliferation and osteogenic differentiation of the MC3T3-E1 cells.

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

Key words: Biocompatible Materials, Cell Proliferation, Tissue Engineering

中图分类号: